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The flow in compound jets 

By S. C. LENNOX 
King’s College, Newcastle-upon-Tyne 

A N D  D. c. PACK 
Royal College of Science and Technology, Glasgow 

(Received 24 May 1961 and in revised form 4 August 1962) 

The Wiener-Hopf technique is applied to solve the linearized problem of a two- 
dimensional compound gas jet, i.e. a jet embedded in a gaseous stream of finite 
width. The solution is found for all combinations of supersonic and subsonic flows 
in jet and stream. The general nature of the solution when only one of the flowsis 
supersonic varies according as the value ofa certain quantity mk, depending upon 
the gas constants, Mach numbers and widths of streams, is greater than or less 
than unity. When mk = 1 the solution appears to be invalid and it is suggested 
that, in this critical case, a steady flow (regarded as the limit in time of an un- 
steady flow) may not exist. It is further shown that the solution propounded by 
Pai (1952) for a supersonic jet embedded in a subsonic stream is simply the 
asymptotic form of the general solution. The findings of Pack (1956) for a super- 
sonic jet in a supersonic stream are confirmed and extended. 

1. Introduction 
A compound jet consists of a jet of gas embedded in a gaseous stream. An 

example is provided by the motion of the exhaust gases relative to a rocket that 
is itself moving through the ambient atmosphere. The gas is compressible and 
the speeds of the stream and jet may be either subsonic or supersonic. Here it 
will be assumed that the pressure difference between the jet and stream is small, 
so that the fluctuations in the jet boundary are small. The method of small 
perturbations is used to linearize the problem. 

Much attention has been given to the problem of a subsonic or supersonic jet 
that emerges into a medium at rest (Rayleigh 1916; Chaplygin 1904; Jacob 1936; 
Mach & Salcher 1890; Emden 1899; Prandtl 1904, 1907; Pack 1948, 1950) 
but the problem of a supersonic jet that emerges into a supersonic stream of 
infinite width has only recently been studied (Pai 1952; Kawamura 1952; Pack 
1956; Ehlers & Strand 1958). Pai obtained a solution by the method of charac- 
teristics; Pack found a more general form of solution by employing the Laplace 
Transform and was able to examine the wave structure in the jet and the stream 
and the fluctuations in the jet boundary. The work of both of these authors 
was further generalized by Ehlers & Strand who discussed the motion of a jet 
inclined at a small angle to the main stream. The problem of a supersonic jet 
emerging into a subsonic stream of infinite width was considered by Pai (1952) 
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but he did not fully specify the boundary conditions, no account being taken 
of the fact that the disturbances would spread upstream in the subsonic region. 
This omission was noted by Klunker & Harder (1952) who indicated that the 
solution as given by Pai could be valid only far downstream of the jet orifice. 

When the supersonic jet is made to emerge into a subsonic stream of finite 
width it is found that the problem is amenable to treatment by the Wiener-Hopf 
technique (Paley & Wiener 1934; Noble 1958) and that the results obtained by 
Pai are simply the asymptotic form of the general solution. By a simple modifica- 
tion of the notation the discussion is extended to compound jets involving other 
combinations of subsonic and supersonic speeds. 

2. Formulation of the problem 
Let an ideal gas pass through a straight-walled nozzle - h  < y < h, 

- co < x < 0 and emerge as a two-dimensional jet in the region - h < y < h, 
0 < x < + 00 into a stream of ideal gas which occupies the region h < [ y( < H ,  
- co < x < + 00 and flows in the same direction as the jet. The stream is bounded 
by rigid walls at y = & H and the flow regions are as shown in figure 1.  

y =  + H  
,I,,, ,,r ,,,,,,,,, 

y = + h  1 Jet boundary 

i - +\ Nozzle - 
y =  -h Jet boundary 

-=\\\\\I\\\ \x\\-\x\\\\\\ \,,\\\I,\ ..... ... \... ...x - s , -  
y =  -H 

FIGURE 1. Schematic diagram of flow regions. 

In  the undisturbed state the jet is taken to be a uniform parallel stream of 
inviscid, non-heat-conducting gas with velocity U,, Mach number M,, density p1 
and pressure p,. The outer stream is supposed to consist of an inviscid non-heat- 
conducting gas with undisturbed velocity U,, Mach number M,, density p, and 
pressure p,. The pressure difference (pl -pz)  is supposed small compared with 
p,, p 2  or p, Ug, the variation of the streams from their original parallel flow 
is assumed to be small and linearized theory is used. 

The velocity potentials in the inner and outer streams, respectively, may be 
written 
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where @l(x, y) and @2(x7 y) are called the perturbation potentials. The boundary 
conditions are formed by ensuring that: 

(i) the direction of flow is continuous across the jet boundary, 
(ii) there is no flow over either the rigid walls or the axis of symmetry, and 
(iii) the pressure is continuous across the jet boundary. 

In  order to apply the Wiener-Hopf technique it is convenient to write 

$(x, Y) = @+(x, Y) + $Ax7 Y), 
where the functions $+ and 6- are defined by 

if x > 0, 

@(x,y) if x < 0. 

@(x,y) if x > 0,  
and @-(x,y) = 

if x < O  

and 

where l2 = p1 UZ,/p2 Ui for general gases, 

= y1 M;/y2 Mi, for polytropic gases with constant 
ratios of specific heats, y1 and y2 ,  
respectively, 

and 

The boundary condition ( 5 ) ,  which implies the continuity in the pressure over 
the jet boundary, is in the form used by Pack (1956). The perturbation potentials 
@1 and @2 satisfy the differential equations 

E = (P1 -P2)lP2 ui* 

Denote the Fourier transform of a function by means of a bar, and in particuIar 

On taking the transforms of the equations (1) to (6) the problem is reduced to 
finding the function 

and is subject to the boundary conditions 

that satisfies the differential equations 

d2$(h, y ) / d y 2 + h 2 ( M 4 - l ) $ ( h 7 y )  = 0 (i = 1,2) ,  (7) 

&$+(A h + 0)  - @+(A, h - 0)  d$-(h, h + 0)  - d$-(h, h - 0)  
7 - - 0,  (8,9) 

dY dY dY dY 
- 

= o  @(A, H - 0 )  ___- 
dY 

- 0, 
d $ ( k  0 )  

dY - 
and 

In deriving (12) from ( 5 )  the perturbation potentials 
chosen so that $+(O,h+O) and @+(O,h-0) are both zero. 

@+(A, h + 0 )  - 12$+(h, h - 0 )  = s/h22/2n. 

(10,11) 

(12) 
and @2 have been 
It is necessary to 
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examine the convergence of the various Fourier integrals and this is undertaken 
in the discussion of the problems. 

There are four possible combinations of flow depending on whether HI and M, 
are greater than or less than unity. These are considered in the following sections. 
Since y = 0 is a line of symmetry the solutions will be written down for the upper 
half-plane only. 

3. The supersonic jet in a subsonic stream (N, > 1,M2 < 1) 

- 1 = & and 1 ---Xi = /3;, then it follows that the potential which 
satisfies (7) and the boundary conditions (10) and (11) may be written in the 

Write 

form 
A(h)cosh/3,y for 0 < y < h - 0 ,  

B(h) cosh hP,(H - y) for h + 0 < y < H - 0, 
(13) 

where A(h) and B(h) are functions of h only. The conditions (8) and (9) may 
now be employed to determine A(h) and B(h) in terms of @+(A, h O)/dy and 
then satisfaction of condition (12) leads to 

(14) v+(h, h) K(h)//32 = -s/h(2r)& - G-(h, h),  
K(h)  = coth h/3, L - m cot hp, h, (15) 

m = lz/3,/P1, L = H - h, (16,171 

G+(h, h) = @+(A, h k O)/dY (18) 
G J h ,  h) = h[$-(h, h + 0) - Z2$-(h, h - O ) ] .  (19) 

- 

where 

and 

Equation (14) is of ' Wiener-Hopf form' (Noble 1958) and it is necessary t o  deter- 
mine whether the terms can be rearranged in such a manner that one side of the 
equation is analytic in an upper half of the complex A-plane, whilst the other 
side is analytic in an overlapping lower half-plane, both sides being analytic in 
a common strip. This rearrangement may be performed after investigating the 
regions of analyticity of the functions E+(h, h),  K(h)  and G-(h, h) .  

The transform G+(h, h) is given by 

The perturbation velocity, and hence a#+(x, h ) / d y  must be bounded as 2 --f +GO 

and it follows (Noble 1958, p. 23) that @+(A, h) exists and is analytic in the region 
I m  h > 0. The function GJh ,  h) is given by 

but, due to the nature of supersonic flow, a$-(x, h - O)/ax is zero and so the second 
integral vanishes. Further, in the region h + 0 < y < H - 0, as x -+ - 03, &(x, y) 
is assumed to be asymptotic to Z A, exp [nrx/P,L] COB [nn(H - y ) / L ] .  This is 
tantamount to the statement that the asymptotic form is the bounded solution 
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of (7) (i = 2) which would be obtained, as x -+ -03, if the rigid walls at y = h 
extended to positive infinity. The function GJh ,  h) therefore exists and defines 
a function of h analytic in the half-plane I m h  < n-/P2L. The function l /h  is 
analytic in the region I m h  > 0 and there is a simple pole at h = 0. Finally, 
there remains the discussion of the function K(h).  It is evident that it has poles 
on both the real and imaginary axes, the latter situated at the zeros of 
tanh hp2L = 0. The function K(h)  is certainly analytic in the region 

0 < Imh < n/P2L. 

Suppose now that K(h)  can be factorized and written in the form 

m) = K+(h)/K-(h) 
where K+(h) is analytic and non-zero in the upper half-plane I m h  > 0 and 
K J h )  is analytic and non-zero in the lower half-plane Im h < 6 < n//3,L where 
6 is a positive real constant to be determined (see after equation (28 ) ) .  With 
this supposition the equation (14) may be rewritten 

@+(A, h)K+(A)/PZ +~K-(O)/h(2n)* = -c[K-(h) -K-(O)]/h(2n)* - G-(h, h) K ( h ) .  
(20 )  

The left side of ( 2 0 )  is analytic in the upper half-plane Im h > 0, the right side 
is analytic in the lower half-plane Im h < 6 and both are analytic in the common 
strip. It follows that one side of (20) is the analytical continuation of the other; 
both may therefore be represented by an integral function E(h). By an investiga- 
tion of the growth order of each side as IAl -+ m in the appropriate half-plane, 
i t  may be shown that E(A) isidentically zero. Thus 

G+(h, h) = -€PzK(O)/h(2n-)*K+(h) (21)  

and G-(h, h) = -e[K-(h) - K-(O)]/h(27~)* K+(h). (22) 

The equation (21) ,  or (22), may be used to find the perturbation potentials in 
the entire flow regions. In  addition to the perturbation potentials, the displace- 
ment of the jet boundary may be examined by writing the equation of the bound- 
ary in the form y = h[l +f(x)], f(x) = O ( E )  (0 < x < m), 

hf ' (4  = %5+(z,h)/aY 
from which i t  follows that 

to the approximation of the linearized theory. The Fourier-Transform theorem 
may be applied to givef(h) in the form -ihf(h) = @+(h,h). 

It is noted thatf(A) is analytic in the upper half-plane Im h > 0. The working 
is simplified by a change of variable and to this end the following transformations 
are introduced: 

< = W l h ,  k = /32L/PIh, 

= x/P1h7 V + ( G  Y) = $2 V+(t, Y)/(277)4 ] (23) 

f(x) = icp1P2F(t)/(2n)'7 $(x, y) = ShP2$( t ,  y)/(2n)'* 
It follows that 

F+(<? h) = - &-(O)/<&+(<) (24) 

and F(<)  = - &-(o)/<2&+(<), ( 2 5 )  

(26) where &(<) = K(h)  = &+(0/&-(5)  = coth k< - m cot <, 
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and the strip in which Q ( E )  is analytic is given by 0 < Im f [  < 6' where sl( = S/3, h) 
is a real positive constant. 

It is now necessary to investigate the factorization of Q(5) .  From 

at) = Q+(t)/&-(t) = [tan t - m t a d  @man t tanh k t  

and the fact (Hardy 1938, p. 480) that tan 5 - m tanh kt has an infinity of real 
and imaginary zeros but no complex ones, while the zeros of tan 5 and of tanh kt 
are well known, &(() may be expanded in an infinite product by use of the Weier- 
strassian factor theorem. The expansion is different according as mk is greater 
than, less than or equal to unity. Write 6 = a + ir. When mk > 1 the roots of 
tang-mtanhkt are given by 6 = 0, t = kao, = +a, and t =  k i r ,  where 
0 < go < i n ,  nw < v, < 3(2n + 1) w, nw < kr, < i (2n + 1) n and n = 1,2 ,3 ,  . . . . 
When mk < 1 the roots are given by 5 = 0, 6 = ~f: an, t = ~f: ir,, and t = & ir, 
where n7r < vn < 3(2n + 1) w,  0 < lcTo < in-, and nn < kr, < 4(2n + 1) w.  When 
mk = 1 the function tan 5 - m tanh k5 has a triple zero at = 0 and the other roots 
a r eg ivenby t=+(+ ,and t=+ i r ,w i thn=  1 , 2 , 3 ,  .... I tmay  benotedthat 
for large values of n, an N nw+O and kr, N nn+o where O = tan-l(m) and 
o = t a r 1 (  l /m).  The growth orders of (suitably chosen) functions Q * ( t )  as 

-+ co are required in the subsequent analysis and these may be shown by 
an analysis similar to that of Noble (1958, p. 128) to be 

&*([) N O(t*) for mk 2 1 and &+([) N O([*-l) for mk < 1, 

where 0 < q < 4. 

Whenmk > 1 
3.1. The case mk > 1 

Factorization gives 

and 

The exponential terms in (27) and (28) are necessary to ensure the absolute 
convergence of the product functions. The choice of terms is not unique but the 
present choice ensures that Q; (6) have algebraic growth as It/-+ co. The factoriza- 
tion of Q ( E )  has been formed in such a way that &+(E) is analytic and non-zero 
in the upper half-plane ImE > 0, while Q-(t) is analytic and non-zero in the lower 
half-plane I m t  < w / k  (this determines the value of the constants 6' and 6), and 
further, that &(O) = 1. 

From (23), (13), (8), (9) and(l8)itmaybeshownthat 
- 
k(t3 Y) = - cos (tY/h) V+(t7 h)/tsin t 

for the region 0 < y < h - 0 and 
- 

Y) = - (Pl/P2) cash [ k t W  - Y)/LI r+(t, h)/tsinh k t  
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for the region h + 0 < y 6 H - 0. The inverse transform theorem yields 

and 

(30) 
where C is a path drawn from - 00 to + 00 in the strip of analyticity. The path 
C will, as required, be closed by an infinite semicircle in either the upper or lower 
half-planes, drawn so as to pass between the poles of the integrands on both axes; 
the integrals (29) and ( 3 0 )  will then be evaluated by using Cauchy's residue 
theorem. 

In (29) let the contour be closed by a semicircle in the upper-half-plane; the 
integral taken round this semicircle vanishes provided that t -  1 + y/h < 0. 
Since the integrand (29) has no poles in the upper half-plane it follows, in terms 
of the original variables, that $(x,y) is zero in the region y - h + x / p ,  < 0, 
0 < y < h - 0; this shows that there is no disturbance in the supersonic jet 
upstream of the leading characteristic from the jet orifice, a result to be expected 
on physical grounds. Downstream of this characteristic there is a disturbance 
given by evaluating the residues at the poles of the integrand of (29) in the lower 
half-plane. In  (30) there are non-zero residues whether the contour be closed in 
the upper or the lower half-plane. This indicates again, as expected, that dis- 
turbances spread both up and down stream in the subsonic flow. 

The residues may now be evaluated and the following results obtained. 
For the jet, 

kx Ck -+- ehp2 P 1 h ( m k - l )  m k - 1  
__- - Y) 

exp ( - 7,z/p1h) cosh (r,y/h) [&-( - ir,)]-l 
7, sinh 7,[k cosec2 kT, - m cosech2 T,] 

cos -2- (cr y /h )  [A, sin (xv,/pl h) + B, cos (xr,/pl h)] 
v: sin a; [ k  cosech2 ka; - m cosec2 v,] 

- 2 -2. 

+ (31) 

in the region 0 < y < h - 0 ,  y - h + x / p ,  > 0 and 

$(x, y)/shPz = 0 in the region 0 < y < h - 0,  y - h + x/p1 < 0. (32)  
For the stream, 

X C 
- +- shp1 hpl(mk - 1) mk - 1 

&G Y) 

exp ( - 7,x/plh) cos b , k ( H  - y)/LI [&-( - i7,)1--l 

cosh [CT, k(H - y)/L] [A,  sin (xv,/plh) +I?, COB (xc, /plh)]  

- ' 1 - 

+2 

r: sin kr, [k cosecz kr, - m cosech2r,] 

(33) sinh k v ,  [k  cosech2 kg ,  - m cosec2 a,] 0 

in the region h+O < y < H - 0 ,  x > 0 and 
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in the region h+O < y < H -  0, x < 0, where 
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C = -iQL(O) and A,+iB, = 2[&( -cr)]-l. 

Downstream of the jet exit, the perturbation potentials fall into three parts. 
The first simply indicates a steady component of the perturbation velocity paral- 
lel to the jet axis, the second contains the terms which decay exponentially with 
the distance from the exit and the third part consists of fluctuating terms. These 
fluctuations are not periodic, in general, due to the nature of the roots c,, but 
when k -+ co the terms are almost periodic. Upstream of the jet orifice the poten- 
tial is zero in the supersonic region and decays exponentially in the subsonic 
region. Comparison with the result obtained by Pai (1952) may be made by 
letting x -+ co in (31) and (33) and then considering the situation as k -+ co. 
The roots cr, rapidly approximate to those of tan 6' = m so that for the supersonic 
jet in a subsonic stream of infinite width the equation (31) gives, in the limit, 

where 0 < 6' < $ 7 ~  and A1,, B,, are constants dependent on A, and B,. The 
equation (35) is identical in form with that given by Pai except for the first term 
which does not appear in his solution. This is, however, simply a difference in 
the notation, the U, of the present paper being the undisturbed jet velocity, where- 
as the equivalent velocity in Pai's analysis is taken to be the mean velocity in the 
jet when the pressure is equal to that of the undisturbed stream. Similarly, by 
considering equation (33) it  may be shown that 

m 
I 

$(5,Y)IWl Cexp C-P2(r7T+6')YIPlhl 
0 

x [ & r c o s [ ( r ~ + ~ ) ~ / P 1 h I  + B , r s i n [ ( ~ ~ + ~ ) ~ l P l ~ I I  (36) 

as x, k -+ co, where A,, and B,, are constants dependent on A, and B,. This is 
again identical with the solution given by Pai. 

The behaviour of the jet boundary may be examined by use of the displacement 
function f ( x ) .  The initial slope of the jet boundary and the ultimate jet width are 
of some interest. The theory of residues leads to the result 

sin 
f(x) - ePJ,k/(mk - 1) +terms in (c~,x//3~h). cos 

This shows that, far downstream, the width of the boundary fluctuates about a 
mean value h[l + ~ & ? ~ k / ( r n k  - l)], indicating, for example, that when there is 
over-pressure in the jet (8 > 0) there is a small overall expansion in the jet width. 
This mean value may be obtained very simply by using the equations of conserva- 
tion of mass and energy between upstream and downstream infinity and the 
condition for continuity of pressure across the jet boundary. It is easy to show 
that when, for example, there is an ultimate expansion of the jet, the final 
pressure lies below both p1 and p,, as would be expected from a consideration of 

*the behaviour of streamtubes in the supersonic jet and subsonic stream. 
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An estimate of f(x) near the jet orifice, found by taking the inverse transform 
of the asymptotic form of F(6) of (25) ,  shows that 

f(x)/e - O(xq+l) as x + O +  , 

where 0 < q < Q. Thus, initially, the jet expands (when e > 0) and the boundary 
curve lies between the limiting curvesf(x)/e = O(x) andf(x)/e = O(x8). 

3.2. The case mk < 1 

As has been observed, the pair of real roots 

< = fvO,  0 < go < Qrr of tan[-mtanhkt = 0 

are now replaced by a pair of imaginary roots 6 = k i ~ ~ ,  0 < kTo < This has 
the effect of modifying the functions Q+(<) and &-((), altering their orders at 
infinity and so leading to a different behaviour of the jet boundary. 

The strip of analyticity in the (-plane is given by 0 < Im f ;  < a’( = 70).  The 
evaluation of the contour integrals proceeds as in the previous case and the 
potential functions are obtained iii a form differing only in the number of terms 
in the summations. The displacement function far downstream of the jet exit 
is given by 

f(x) - -e&32k/(l-mk)+ termsin (a,x/plh), 

showing that the boundary fluctuates about a mean value JL[l-~/3,/?~k/( 1 - mk)] 
and that in the case of over-pressure there is an overall decrease in the mean 
jet width, a result opposite to that obtained for the case mk > 1. 

The behaviour of the boundary at the orifice is again found by an examination 
of the asymptotic form of T((). This leads to 

sin 
cos 

f(.)/e O ( X * )  (0  < P < Q), 

and i t  is seen that the initial shape lies between the curves f ( x ) / e  N O(1) and 
f ( x ) / e  - O(z4). The initial slope is O(Z-~), where Q < 0: < 1, and is infinite. 
An infinity of this kind while physically anomalous occurs in the solution of 
other plane subsonic flow problems and may be interpreted as due to an over- 
specification of boundary conditions. Woods (1961, p. 261) gives the example of 
subsonic flow from a nozzle into a medium at rest and indicates that the anomalous 
situation arising at the exit may be avoided by a proper shaping of the nozzle 
or by the assumption of separating flow. Similar considerations would appear to 
apply here. The physical possibility of maintaining the pressure differences in 
the compound jet would depend on an adjustment of the boundary, failing which 
one might expect the annulment of these differences by upstream propagation 
of disturbances through the subsonic region. 

3.3. The case mk = 1 

This case is characterized by  the behaviour of the function tan 6 - m tanh k< at  
6 = 0. The function vanishes there like 63. Thus, in particular, Q+([)  has a simple 
zero a t  the origin (whereas in the previous two cases it had a simple pole). 
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Consider the displacement function. Near t = 0 the function P ( t )  of (25) has 
the expansion 3k[l+ O ( [ ) ] / (  1 + k2)  t3 and it is seen that as x+ co 

f ( x )  N u1x2+b,x+c,+ ...) 
where a,, b,, cl, are constants. In  fact, the jet leaves the exit with a zero gradient, 
undergoes an initial expansion but continues to diverge. The solution is physically 
impossible but bears a strong resemblance to well-known resonance phenomena. 

Comparison may be drawn between this problem in gas dynamics anda problem 
discussed by Stoker (1957) of waves created by a disturbance on the surface of 
a running stream of finite depth h. When the stream flows with an undisturbed 
velocity U ,  Stoker shows that the boundary condition on the free surface leads 
to a discussion of the zeros of h t -  (gh/U2)  tanhht. This function corresponds, 
in so far as the two problems may be compared, with tan t - m tanh kt, where 
both functions vanish like .53 at [ = 0 in the critical cases (gh/U2) = 1 and mk = 1, 
respectively. Stoker shows that, in the critical case, the wave amplitude and 
perturbation velocities all tend to infinity with the distance downstream. How- 
ever, by a more detailed examination of the general unsteady problem he is able 
to discuss the behaviour of the transient terms and to show that they are O(t3) as 
t --f m and that consequently the steady state is never attained. The conclusion 
is reached that it is no longer possible to apply the assumptions of the linearized 
theory in this case. It seems likely that if the linearized unsteady flow in the 
compound jet considered here could be analysed in a similar way the transient 
terms would increase with time. The further discussion of the solution in the 
critical case must therefore await the solution of the linearized unsteady problem, 
or an attack on the full non-linear equations of steady flow. 

The problem of a subsonic jet in a supersonic stream ( M ,  < 1, M ,  > 1) is 
mathematically identical with that discussed above. It is only necessary to 
interchange the indices 1 and 2, invert m and k, and put H - y for y in the formula- 
tion of the problem. The disturbances spread in all directions inside the jet 
but only downstream of the leading characteristics in the outer stream. 

4. The supersonic jet in a supersonic stream (MI > 1, M2 > 1) 

Although a solution to this problem may be obtained without employing the 
Wiener-Hopf technique (Pai 1952; Pack 1956) it  is, nevertheless, of interest to 
note that by a small modification of 0 3 the solution may be obtained at once. 

With M$- 1 = p: and ME - 1 = /3: and all other notation as in the previous 
section, the following expressions may be obtained: 

7+(5J) = 1/tQ(t)7 (37) 

(38) Q(<) = cot kt + m cot 5. 
It may be shown (Carslaw & Jaeger 1959, p. 324) that &([) has all of its poles 
and zeros real and simple, so that Q(5) is analytic and non-zero in the upper 
half-plane Im > 0. Since 7+(t, h) and l/t are both analytic in this region no 
factorization is necessary and (37) takes the place of (24). Similarly 

m) = l/t2&(t) replaces the equation (25). (39) 
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The perturbation potentials and the displacement function may be obtained 
as in $3.  For example, in the jet 

4(X, Y) - X k  cos(ary/h)sin(arx//3,h) 
- 2 2 3 7  ___- _ ~ _ _ _ _  

ehP, [/3,h(mk + l)] aT sin ar[k cosec2 ka, + m cosec2 a,] 

for the region y-h+x/P, > 0, 0 < y < h-0 and $(x,y)/ehp2 = 0 for the 
region y - h + x/,!?, < 0, 0 < y < h - 0, ar being the positive non-zero roots of 
tan 6 + m tan kc = 0. The displacement function is given by 

It may be noted that in the over-pressure case (e > 0 )  the jet boundary expands 
to a mean width given by y = h [ l + ~ / ? ~ / 3 ~ k / ( m k  + l)] with quasi-periodic fluctua- 
tions about the mean. If the outer stream wall be made infinitely wide (k -+ co) 
then the ultimate mean width is h[ 1 + e/31/32/m] which is just the value found by 
Pack (1956). The extra terms in (40) are due entirely to the interference arising 
from the waves reflected from the outer walls. 

In  his solution for the jet in an infinite stream Pack observes that there is a 
singular case when = 1 (that is when m = 1); the jet boundary expands to 
a width given byf(x) = B and thereafter remains a t  this constant width. When the 
outer stream is of finite width and m = 1, expansion of (39) leads to the result 

P ( t )  = [l - (a + b )  + ab] [l + ab + a2b2+ a3b3 + . . .] /2i[2. 

where a = exp ( - Z i t )  and b = exp ( - 2 i k t ) .  The transition to an infinite stream 
is made by letting k tend to infinity. If k = 1 then 

P ( t )  = [ 1 - 2 exp ( - 2it) { 1 - exp ( - 2 i t )  + exp ( - 4it) + exp ( - S i c )  + . . .)]/Zit2 

and this leads to the term-by-term transform 

P(t) = &[{ t )  - 2{t- 2>+ 2{t- 4) - 2{t- 6) + . . -1, 

where 
(t-T) if t 2 T ,  

{ t - T J = { O  if t < T .  

The graph of this function is a well-known triangular type waveform and is 
illustrated in figure 2. The boundary expands to P(2)  = 1 and then oscillates as 
shown between P(t)  = 1 and F(t) = 0. If k = 2, then 

P(s)  = [l -a-a2+2u3-a*-a5+2a~...]/23~2 

and so P(t) = t [{ t)- {t - 2) - {t- 4) + 2{t-  6) .  ..I. 

The boundary expands to P(2)  = 1, remains at constant width in the interval 
2 < t < 4 and then contracts to F(6)  = 0. This waveform is then repeated as 
t increases. The waveform when k = 10 is shown in figure 3. As k increases the 
disturbance due to the arrival at the boundary of the wave reflected from the 
outer stream wall moves further downstream, and it disappears as k becomes 
infinitely large. The jet boundary then expands to F( 2) = 1 and remains constant. 
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It may be observed that form = 1, the oscillations in the jet boundary are periodic 
with a period in t of 2(k + 1) when k is rational. When k is irrational, the wave- 
form is of a similar shape but no longer periodic. 
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FIGURE 2.  Oscillation of the jet boundary. Case of no reflected waves at boundary; 
m = 1, k = 1. (The Mach lines are shown dotted. The outer rigid walls are not shown.) 
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FIGURE 3. Oscillation of  the jet boundary. Case rn = 1, k = 10. 

A further investigation into the nature of the reflected and transmitted waves 
may be made by expanding the inverse transforms of the perturbation potentials 
$(t ,  y) in each of the two regions in powers of exponential functions and then 
transforming term by term (Lennox 1959). The wave disturbance inside the jet 
is complicated by the presence of disturbances which are transmitted through 
the boundary and then reflected back again a t  the outer walls. The transmission 
and reflexion coefficients may be found and the work of Pack (1956) extended. 

5.  The subsonic jet in a subsonic stream 
When both the jet and outer stream are subsonic a formulation of the problem 

in the manner of the preceding sections leads again to a solution possessing an 
infinite gradient at the orifice. The width of the jet changes rapidly from the 



The flow in compound jets 

orifice towards its value at infinity downstream given by 
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y = h[l -q?l/32k/(mkf I)]. 

In  the expressions for the potentials there are no periodic or almost periodic 
terms, the terms in the summations decaying exponentially with distance both 
upstream and down from the jet orifice. 

Here again it might be possible to eliminate the anomalous gradient at the jet 
orifice by designing the nozzle suitably. 

6. Conclusions 
The problem of a two-dimensional compound jet has been solved by using the 

Wiener-Hopf technique with the linearized theory. The solutions have been 
presented in the form of infinite series. Downstream of the jet exit (or of the leading 
characteristics from the end of the nozzle in the supersonic motion) the perturba- 
tion potential consists essentially of two parts; the first part contains attenuation 
terms which decay exponentially with the distance from the exit and the second 
part contains terms which do not decay but are of quasi-periodic nature. Up- 
stream of the jet exit the perturbation potential is zero when the flow is supersonic 
and contains only attenuation terms when the flow is subsonic. 

It is found that the boundary of the jet fluctuates about a mean displacement, 
measured from the undisturbed position of the boundary, whose magnitude is 
given by ehPlP2k/(mk i l), the plus sign to be taken when both flows are super- 
sonic. When only one of the flows is supersonic the nature of the solution, and 
in particular the ultimate mean width and the initial slope of the boundary, is 
found to depend on the magnitude of mk, a quantity depending upon the gas 
constants, the Mach numbers and stream widths, relative to unity. In  the over- 
pressure case (e > 0) the supersonic jet expands into the subsonic region when 
mk > 1, whereas the subsonic jet expands into the supersonic stream when 
mk < 1. When the inequalities for mk are reversed the solution contains an 
infinite gradient in the boundary of the jet at the orifice; the physical significance 
of this has been considered. The case mk = 1 is critical, the perturbation potentials 
and the boundary displacement becoming infinite with the distance downstream 
from the jet orifice. The solution then has the appearance of a resonance effect 
and would seem to indicate a breakdown in the applicability of the linearized 
theory. 

It is shown that the asymptotic form of the solution to the problem of a 
supersonic jet in a subsonic stream provides the solution originally presented by 
Pai (1  952). The results obtained by Pack (1956) for the flow of a supersonic jet 
in a supersonic stream are confirmed and extended. 

Editor’s note: A point in dispute between the authors and a referee has been 
left unresolved. The referee’s position is as follows: 

It is the opinion of the referee that in the cases of 53 3.2 and 5 there is an essential 
non-uniqueness in the physical solutions, one which does not appear in the 
author’s solutions because they do not provide for upstream propagation of 
disturbances in the upstream subsonic channels. The downstream flow in the 
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case of 5 3 is mixed subsonic-supersonic, acts like a subsonic flow in permitting 
upstream propagation of a disturbance if mk > 1, and acts like a supersonic flow 
in forbidding upstream propagation of a disturbance if mk < 1. For each sub- 
sonic channel in the upstream flow there is a parameter to be determined which 
measures the strength of the upstream disturbance in that channel. In  the case 
of Q 3.1 (mk > 1) the pressure downstream determines the single parameter in 
question. In  the case of 9 3.2 the parameter is indeterminate. In  the case of Q 5 
the pressure downstream can determine a t  most one relation connecting the two 
parameters in question, so that one parameter remains indeterminate. 

These two indeterminate cases show the phenomenon of an infinite negative 
boundary slope near the orifice in the solutions of this paper. The referee feels 
that this phenomenon is anomalous. This fact suggests that the proper resolution 
of the indeterminancy is through a Kutta condition at  this point. With a Kutta 
condition applied, the solution is one with each stream a t  constant velocity, and 
is then unique. 
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